Wide propagation of graded signals in nonspiking neurons.
نویسندگان
چکیده
Signal processing in neuritic trees is ruled by the concerted action of passive and active membrane properties that, together, determine the degree of electrical compartmentalization of these trees. We analyzed how active properties modulate spatial propagation of graded signals in a pair of nonspiking (NS) neurons of the leech. NS neurons present a very extensive neuritic tree that mediates the interaction with all the excitatory motoneurons in leech ganglia. NS cells express voltage-activated Ca(2+) conductances (VACCs) that, under certain experimental conditions, evoke low-threshold spikes. We studied the distribution of calcium transients in NS neurons loaded with fluorescent calcium probes in response to low-threshold spikes, electrical depolarizing pulses, and synaptic inputs. The three types of stimuli evoked calcium transients of similar characteristics in the four main branches of the neuron. The magnitude of the calcium transients evoked by electrical pulses was a graded function of the change in NS membrane potential and depended on the baseline potential level. The underlying VACCs were partially inactivated at rest and strongly inactivated at -20 mV. Stimulation of mechanosensory pressure cells evoked calcium transients in NS neurons whose amplitude was a linear function of the amplitude of the postsynaptic response. The results evidenced that VACCs aid an efficient propagation of graded signals, turning the vast neuritic tree of NS cells into an electrically compact structure.
منابع مشابه
Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance.
Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na(+)-dependent spikes, but express an LT-VACC that...
متن کاملNonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
The proprioceptor that signals the position and movement of the first joint of crustacean legs provides an excellent system for investigating information processing and transmission in neurons that function in a graded (nonspiking) manner in the context of a simple motor system. The thoracic-coxal muscle receptor organ (TCMRO) spans the thoracic-coxal joint and transmits graded signals to the C...
متن کاملCrustacean motor pattern generator networks.
Crustacean motor pattern-generating networks have played central roles in understanding the cellular and network bases of rhythmic motor patterns for over half a century. We review here the four best investigated of these systems: the stomatogastric, ventilatory, cardiac, and swimmeret systems. Generally applicable observations arising from this work include (1) neurons with active, endogenous ...
متن کاملInvestigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures
In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect and waveguiding behavior of electr...
متن کاملInformation transfer rate of nonspiking afferent neurons in the crab.
The thoracic-coxal muscle receptor organ (TCMRO) is the only proprioceptor at the thoracic-coxal joint in the crab leg. The S and T afferent neurons of the TCMRO convey signals to the CNS solely by means of graded changes in membrane potential. The rate of information transfer of these afferents was determined by measuring the signal-to-noise ratio (SNuR) of these cells after repeated stimulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 109 3 شماره
صفحات -
تاریخ انتشار 2013